

Cost Increase 2x Inflation

Augustine's XVI Law: In the year 2054, the entire defense budget will purchase just one aircraft. (no ships or tanks!)

Why does the cost of Defense Systems increase at 2x Inflation?

- a. There is no economy of scale (Craft Production)
- b. We are willing to pay a premium for an marginal performance increase (the advantage in battle)
- c. Political compromise results in smaller than planned buys (Super Hornet, F-22, JSF)

What is the point?

Tool-less Manufacturing positively impact a, b, c

What if we needed no part specific tooling for component manufacture?

Acquisition: Fly before you buy

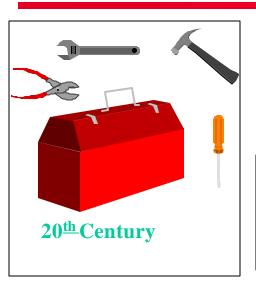
Operation & Support: Store spare parts as software

Prototype Development: Cycle time and cost reduced

30X

How does this fit in with megatrends?

Virtual Manufacturing / Paperless Design Internet based Commerce / Agile Manufacturing


Capital for Infrastructure: ~\$2B/year for five years ?? (Industrial Machinery & Equipment Market \$5 B in CY97) (RP Equipment Market ~\$200M/year, CY97)

Solid Freeform Manufacturing "Toolbox for the 21st Century Inventor"

Defense Sciences Office

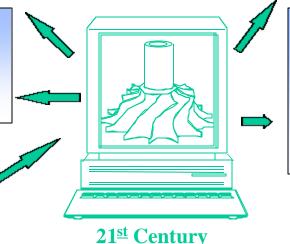
Technology-

- Convert virtual objects to solid objects with form, fit and function, and without part specific tooling or operator intervention.
- Reduce prototyping time from months to days for complex components.

3-D Printing (MIT)

- Ceramics
- Injection Molding Tools
- Casting Molds

Fused Deposition (Honeywell; Lone Peak Stanford/ACR)


- Silicon Nitride
- Plastic Molds
- Electroactive Ceramics

Stereolithography (SRI; U. Mich.; CCI)

- Silicon Nitride
- Alumina
- Porous Metals

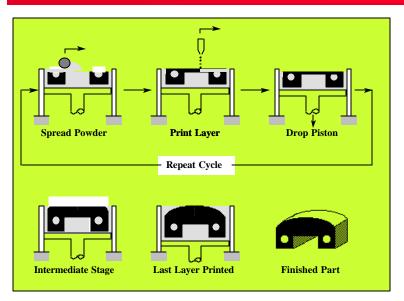
Reverse Engineering

• X-ray tomography (ARACOR)

Laminate Object

Manufacturing (U. Dayton,

Javelin, CWRU)


- Ceramic Matrix Composites
- Masters
- Piezo- Acuators

3-D Printing, (MIT)

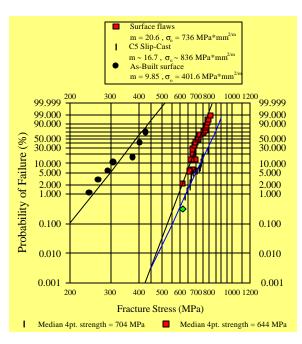
Defense Sciences Office

Schematic illustration of the 3D printing process. A layer of powder is spread and selectively joined by printing binder. Repeat until full geometry is defined.

Companies commercializing 3D Printing:

- •ExtrudeHone, Corp. of Irwin, PA for tooling and metal parts.
- •Z Corp. of Somerville, MA for appearance models.
- •Soligen, Inc. of Northridge, CA for ceramic molds for metal casting.
- •Therics, Inc. of Princeton, NJ for medical applications.
- •Specific Surface Corp. of Franklin, MA. for filters
- •MMCC Inc. of Waltham, MA for Metal Matrix Composites
- •Kennametal & Valenite, cutting tools
- •TDK Corp. (Japan) electronics/ferrites

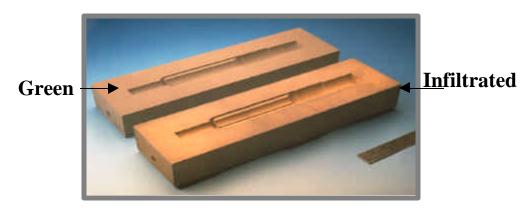
The fundamental strengths of the process are:


- •Flexibility in Geometry. Any 3-D geometry with 50 µ feature size can be created.
- Flexibility in Materials. Components can be built out of ceramic, metal, or polymeric powders. The composition can be locally controlled by ink-jet printing of different materials.
- Scalability. Multiple nozzles can be used to increase the rate of the process.

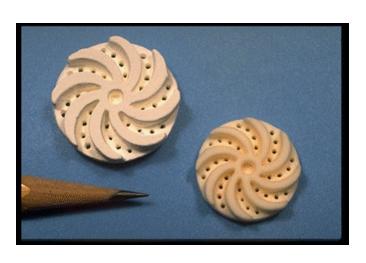
Extrusion Deposition (Honeywell)

Defense Sciences Office

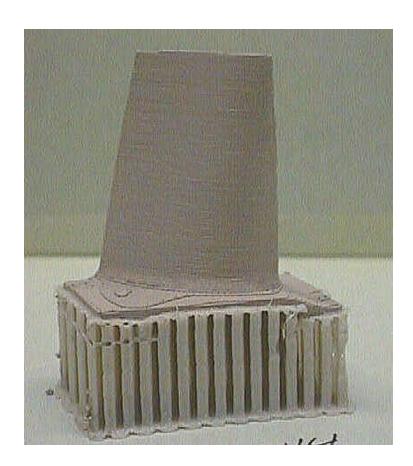
- Monolithic JTAGG II Army blade fabricated and sintered; blade with Si₃N₄-30% SiC insert fabricated
- Test bars built for room temperature strength of machined and as-built surfaces
- Multi-material parts (Si₃N₄ and SiC) fabricated
- Blades (monolithic now, insert later)
 metrology via CMM data analysis.
 Quantitative data on shrinkage and
 warpage used for reverse
 engineering. Can compare to bisque
 machine process



3-D Printing (MIT)

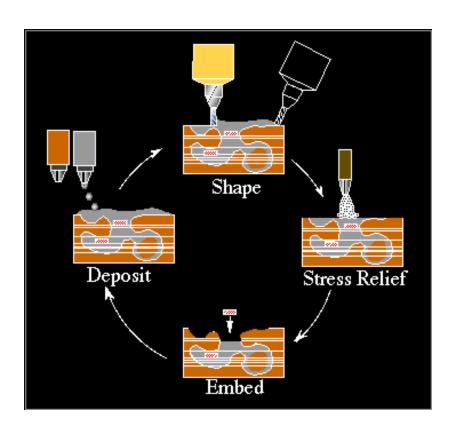


Al₂O₃ turbine vane printed on slurry deposited layer


Injection molding tooling with conformal cooling (15% reduced cooling time cycle)

Pin wheel printed on slurry layers

Water Soluble Support (ACR Inc.)


Silicon Nitride Blade, Water Soluble Support Material

ABS Polymer Gear assembly, Made with water soluble support

Shape Deposition Modeling (Stanford U., CMU, ACR Inc.)

Support and build materials are alternately deposited and machined. Either direct parts, or mold for casting parts are produced.

Si₃N₄ turbine for M-Dot micro gas turbine engine

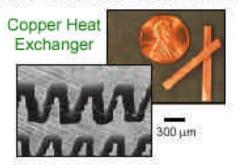
☆ Turbine rotor features:

◆ Diameter: 22 mm

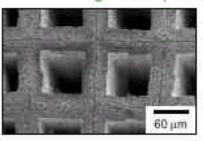
♦ 13 blades, min. thickness: 250 µm

Geometry's incompatible with CNC tool paths are possible.

Build Time of Mold SDM Parts

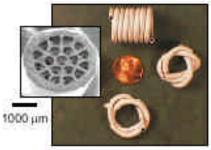


parts		Center Seal		Inlet Nozzle		3 Axis Rotor		5 Axis Rotor	
process		6 molds	per mold	6 molds	per mold	9 molds	per mold	1 mold	per mold
Mold Fabrication	Machining	2.2 hr	0.37 hr	24.3 hr	4.0 hr	36.5 hr	4.1 hr	16 hr	16 hr
	Deposition	2.6 hr	0.43 hr	11.3 hr	1.9 hr	12.5 hr	1.4 hr	N/A	N/A
	Subtotal	4.8 hr	0.8 hr	35.5 hr	5.9 hr	49.1 hr	5.5 hr		
		0.6 day	0.1 day	4.4 day	0.7 day	6.1 day	0.7 day	3 day	3 day
Etching		0.5 day		3 day		5 day		5 day	
After mold processes	Casting	5 day							
	Curing								
	De-molding								
	Drying								
	Debinding								
	Sintering								
Total	one batch	6.1	day	12.4	day	16.1	day	13	day
	N parts	0.1 N +	- 5.5 day	0.7 N	+ 8 day	0.7 N +	- 10 day	3 N +	10 day

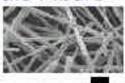

(1 day = 8 hours)

MicroFabrication by CoeXtrusion Aaron Crumm and John Halloran (U. Michigan)

Micro-Channel Structures



Cofired Structures PMN-PT / AgPd Composite


Honeycomb Tubes

Post Extrusion Forming

Fine Scale Fibers

Alumina

25 µm

<u>Summary</u>

- For the Physicists: Consider teaming with organizations which have SFF expertise for fabrication of Meta-Materials.
- For the SFF community: Think about teaming with Physicists. (Particularly if they understand the physics of Meta-Materials)